

Wordle Solver

An investigation undertaken by Richard Pawson

Documented as a possible NEA Project submission for the

AQA A-level Computer Science qualification

January 2023

Introduction .. 1

Analysis ... 2

Player interviews ... 4

Initial modelling .. 6

Mock-up of the user interface .. 12

Adopting a functional approach to design and coding ... 13

Summary of SMART objectives ... 15

Design .. 16

Identifying the best word for the next attempt – algorithm and data structures 16

Marking an attempt word against a target – algorithm and data structures 18

Console user interface program - flow ... 22

Technical Solution ... 24

Video showing the working solution .. 24

Source code repository ... 24

Complete code for the Wordle Solver .. 25

Commentary on the core functional code .. 26

Commentary on the user interface code .. 29

Testing ... 30

Writing executable unit tests for all functions.. 31

Testing that the program can solve the daily Wordle puzzle ... 36

Improving the performance through parallel processing ... 40

Testing the effectiveness of the algorithm, exhaustively ... 42

Comparing the two variants of the algorithm, plus ‘hard’ mode ... 44

Evaluation ... 46

Evaluation against the SMART objectives ... 46

External validation .. 47

Evaluating the user interface .. 48

Evaluating the code style .. 49

Could the effectiveness of the Solver be improved? .. 49

Appendix I: Lists of valid words and possible answer words .. 51

Wordle Solver – A-level NEA Project by Richard Pawson

1

Introduction

Wordle is a word puzzle in which the player attempts to guess a hidden five-letter ‘target’ word in a

maximum of six attempts, receiving feedback on each attempt. It is similar to several older pen-and-

paper puzzles. Wordle was invented by software engineer Josh Wardle, originally for his own

personal use, but was made public in late 2021. There are now many copies and variants available

online but the original version – now owned by the New York Times – offers a new puzzle each day,

and has attracted an estimated 3 million players worldwide.1

The overall aim of this project is to design and develop a fully-automated Wordle ‘solver’. A quick

search on Google makes clear that such solvers have already been built, just as software developers

have created automated solutions to most board games and puzzles. Although aware of the

existence of automated solvers, however, I have not looked at any of them, because my motivation

is to explore for myself, working from first principles, how to design an automated solution.

1 https://www.nytimes.com/games/wordle

https://www.nytimes.com/games/wordle

Wordle Solver – A-level NEA Project by Richard Pawson

2

Analysis

My Wordle Solver will be designed specifically to work with the official version of Wordle. It might

be adaptable to work with many of the variants, but those are not within the scope of the project.

The screenshot below, captured from the official website, explains the rules:

Of critical importance is the statement ‘Each guess must be a valid 5-letter word’. As with the board

game Scrabble, human players with higher vocabulary have an advantage, but unlike with the official

rules of Scrabble, in Wordle there is no rule against looking up words. Also, unlike Scrabble, if you

were to try a combination of letters that is not a valid word (for example AEIOU) there is no penalty

– the system just advises you that your attempt is Not in word list and the attempt is not scored and

not counted.

Wordle’s publisher does not specify the list of valid words, but lists of valid Wordle attempt words

are widely available online. Many of these attempt words are obscure. For this project, I have used a

list of 12,947 such valid words, and which the source claims are all valid for use as Wordle attempts

(see Appendix I: Lists of valid words and possible answer words).

However, it is not the case that the daily ‘target’ word can also be any valid word. The official site

says nothing about this, but it can be determined from the JavaScript source code that the daily

word is chosen from a rather smaller list of 2309 words (see, again, Appendix I: Lists of valid words

and possible answer words). This makes sense: it avoids the inevitable howls of protest if the day’s

target word were, say, XYLIC or WEKAS, which are probably not widely known. The 2309 possible

answers have obviously been chosen on the basis that they are likely to be familiar to a large section

of the English-speaking populace – although they do include some American spellings (e.g. VALOR)

and idioms (e.g. HOWDY). Surprisingly, many common 5-letter words do not appear in this second

list: in particular, plurals of common 4-letter words such as NAILS and four-letter verbs with a D

added for past tense such as ACHED. Presumably this decision has been taken to maximise variety.

When each daily puzzle is finished – either because the user has identified the word or has used up

six attempts without identifying it – the result is added to a tally of the user’s previous scores. The

screenshot below shows my own personal stats from playing Wordle online (without help from any

program), as of December 7th 2022.

Wordle Solver – A-level NEA Project by Richard Pawson

3

There are many articles online about Wordle performance, including one2 which offers the following

‘key findings’:

• Canberra, Australia is the global city with the best Wordle average: 3.58 guesses.

• Sweden is the world’s best country at Wordle, with an average of 3.72.

• The US is ranked #18 in the world for Wordle, with a national average of 3.92.

• The American state with the best Wordle average is North Dakota (3.65).

• The US city with the best Wordle scores is Saint Paul, Minnesota, with an average of 3.51.

Unfortunately, this ‘information’ needs to be taken with a large pinch of salt! The official Wordle site

does not disclose any statistics. Surveys like the one above are based on mining Twitter, Facebook

and other social media for users’ postings of their own scores. You don’t need to be a professional

data scientist to realise that this is unreliable data: people are more likely to publish their Wordle

scores when they are performing well than when they are performing badly! Furthermore there is

plenty of scope for enhancing your score: just play it once through on one computing device, then

play it again on a different device, now knowing the answer, but still taking two or three faked

guesses to lend credibility to your claimed scores.

2 https://word.tips/wordle-wizards/

https://word.tips/wordle-wizards/

Wordle Solver – A-level NEA Project by Richard Pawson

4

Player interviews

In the course of this project, I interacted with more than a dozen family members, friends, and

colleagescolleagues, who play Wordle regularly, to try to ascertain how they go about trying to solve

a Wordle puzzle, and how well their approach works. Initially, these discussions were informal and

unstructured; later I added more structure in the form of fixed questions asked face-to-face or (in

most cases) by email; some of those were followed up with further unstructured interaction. The

following is what I learned from those interviews:

• All the individuals I interviewed had played Wordle regularly for between 2 and 20 months.

• When asked what percentage of the daily puzzles they successfully solved within six

attempts, the responses all ranged between 97% and 100%. However, despite being asked,

only one person provided their actual statistics from Wordle. Several said that they did not

have the statistics for whatever reason, for example because they used different machines. I

have no reason to doubt their truthfulness, but one does wonder how they know a figure

like, say, 98% so accurately if they don’t have the official statistics. It is also possible that

their claimed figure accurately represents their more recent results, but they preferred not

to disclose the full statistics.

• When asked for their average number of guesses, most people responded either with a

specific number between 3 or 4 (3.5) or more vaguely ‘between 3 and 4’. The official Wordle

statistics page does not show your average score. When I gently probed a few of the

respondents (I did not want to insult their intelligence) I established that several did not

know how to correctly calculate the average. For my own statistics (shown on the previous

page) the average is calculated as (0x1 + 3x2 +23x3 + 34x4 + 5x5 + 2x6)/67 = 3.7. I believe

that several were confusing the idea of average (or mean) with ‘mode’ – the location of the

highest point on the distribution curve.

• When asked if they had a preferred word (or words) for the first attempt, all affirmed that

they did. Specific words cited included (listed in alphabetic order): AMIGO, ADIEU, ALERT,

ALTER, ANGEL, ARIEL, ATONE, AUDIT, CLOUD, DREAM, FEAST, GREAT, HOTEL,

IDEAL, PEARL, RADIO, TREAD. Those that said they had more than one first attempt

word, said this was to add variety – there was (unsurprisingly) no reason given for which one

they would choose at the start of any puzzle. It is clear that most people favour words with

at least two vowels, and in many cases three.

• When asked if they had a preferred word (or words) to use as the second attempt if their

first attempt came back with no matches, most had. Typically the second attempt used as

many as possible of the vowels not used in the first word, and all different consonants.

Examples given included (in alphabetical order): AUDIT, CLOUD, COULD, COUNT, HOTEL,

MOUND, PITHY, PLUCK, SCOUT, SHOUT, SOUND. One respondent effectively had pairs of

words with no common letters, where they used either of the pair as the first attempt, and

the other as the second if the first produced no matches.

• Next I asked if they believed that each attempt word should be a possibility for the (hidden)

target. For example each letter already marked as green should occur in the same position in

each subsequent attempt word, and each yellow letter should also occur and in a different

Wordle Solver – A-level NEA Project by Richard Pawson

5

position. The majority of respondents confirmed that they adopt this approach. This was my

first surprise from the interviews, because I have never consciously used that approach. For

example, even if my first attempt has scored one yellow and one green, for my second

attempt I will often use a word that has all different letters – with the aim of gaining more

information. This means that I consciously forgo the possibility that I might ‘get it in two’. In

follow-up discussions I found that several players in both camps felt quite strongly that

theirs was the better way to play.

My second surprise in regard to this question was when one respondent said that the first

approach was necessary in order to play Wordle in ‘Hard mode’. Until that point I had not

heard of ‘Hard mode’. It is not mentioned in the rules, and its existence is not readily

apparent from the user interface (you have to explore Settings in the top-right corner). Hard

mode enforces the rule that every attempt word must be consistent with the marks from

previous attempts. But when I followed up on my question (with a few respondents) I found

that most, like me, were not aware of Hard mode. This indicated that most people who were

adopting this principle, were doing so because they believed that was the best way to solve

the puzzle, even in the normal (not Hard) mode. They said things like, ‘You should never pass

up the possibility of getting the target word with your next attempt.’

• I finished the structured part of the interaction with questions designed to glean how well

the players knew the extent of the difference between the number of words that may be

used as attempts, and words that can actually be target words. This showed that only

around half of respondents knew that there was any difference. For those that did not I

ignored their answers to the next two questions – and in fact several some admitted that

they did not really understand them.

• I asked: “Which of the following 'words' do you think would you be allowed to use in as an

attempt word: AALII, POGAL, QUOPH, SMAAK, XYSTS, ZURFS?” Almost all responded

that none were allowed words; one thought that POGAL might be allowed. In fact they are

all allowed attempt words except POGAL and QUOPH, which I had made up – as a control. It

is hardly surprising that most people did not know that AALII, SMAAK, XYSTS, ZURFS are

valid attempt words. I would not have known either except that I had access to list of more

than 12,000 acceptable 5-letter attempt words.

• Finally I asked “Which of the following words do you think could be actual 'target' words set

in the official Wordle game: ACHED, BUTTE, JUNTO, MYRRH, VIGOR, ZONES?” Some

thought that BUTTE or JUNTO might not be valid target words (they are). The surprising

thing was that most thought that ACHED and ZONES were valid target words, when in fact

they are not. They were unaware of the fact that plurals ending in S and past tenses ending

in D are never set as target words.

In summary, the conclusion from this analysis of player interview is not that the players I know are

ignorant – it is that an automated computer solver could use a vastly larger number of attempt

words than the typical human player, and that there are at least some rules of thumb that it could

apply which appear unknown to many competent players. This gave me some encouragement in my

quest. It was now time to start thinking about possible algorithms.

Wordle Solver – A-level NEA Project by Richard Pawson

6

Initial modelling

It appears – both from my interviews and from reading many blogs about Wordle playing strategy

(of extremely variable quality!) – that most players are, at least to some extent, seeking to use words

that cover the most frequently occurring of the yet to be identified letters. This could certainly form

the basis for an automated Wordle solving algorithm

The graph below shows the letter frequency for all words in the Concise Oxford Dictionary (9th

edition, 1995).3

As a first step I decided to analyse the letter frequency specifically in the 2309 possible answer

words for the official Wordle game and compare this to the previous analysis:

The distribution of letter frequency is broadly similar, though there are notable differences for the

letters I, K, N and, especially, Y.

It is also fairly obvious that the letter frequency is not the same for all positions. So I next generated

a frequency analysis of letters for each of the five letter positions in the 12,947 valid words. I wrote

this as a single function using ‘expression syntax’ (the function returns a single expression):

static IEnumerable<(char,int)> CharacterCount(IEnumerable<string> words, int charNo) =>
words.GroupBy(w => w.ToCharArray()[charNo]).Select(g => (g.Key,g.Count())).OrderBy(t =>
t.Item1);

3 https://www3.nd.edu/~busiforc/handouts/cryptography/letterfrequencies.html

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

https://www3.nd.edu/~busiforc/handouts/cryptography/letterfrequencies.html

Wordle Solver – A-level NEA Project by Richard Pawson

7

This function was called five times with the value of charNo ranging from 0 to 4. The results are

shown in the following table. For each column, the letters are presented in relative order of

frequency in that position:

1 2 3 4 5

S 1560 A 2260 A 1235 E 2323 S 3950

C 920 O 2093 R 1197 A 1073 E 1519

B 908 E 1626 I 1047 T 897 Y 1297

P 857 I 1380 O 989 I 880 D 822

T 815 U 1185 N 962 N 786 T 726

A 736 R 940 E 882 L 771 A 679

M 693 L 697 L 848 R 716 R 673

D 681 H 544 U 666 O 696 N 530

G 637 N 345 T 615 S 515 L 475

R 628 Y 267 S 531 K 500 O 388

F 595 T 239 M 510 D 471 H 367

L 575 P 228 C 392 G 422 I 280

H 488 M 188 D 390 P 418 K 257

W 411 C 176 P 363 C 406 M 182

K 375 W 163 G 362 M 402 P 147

N 325 K 95 B 334 U 401 G 143

E 303 S 93 W 271 B 242 C 127

O 262 D 84 K 268 H 235 F 82

V 242 B 81 V 240 F 233 X 70

J 202 G 75 Y 213 V 155 U 67

U 189 X 57 F 178 W 128 W 64

Y 181 V 52 Z 142 Z 126 B 59

I 165 Z 29 X 133 Y 108 Z 32

Z 105 F 24 H 120 J 29 Q 4

Q 78 Q 15 J 46 X 12 V 4

X 16 J 11 Q 13 Q 2 J 3

Next, I repeated the exercise for just the 2,309 possible answer words. While they are similar, there

are a few striking differences, particularly the ranking of R, in columns 2, 3, and 5 and the rankings of

S and D in column 5. The last two are consistent with the earlier observation that the Wordle answer

list does not include plurals ending in S nor past tense verbs ending in D. These differences are

indicated by highlights in both tables:

Wordle Solver – A-level NEA Project by Richard Pawson

8

1 2 3 4 5

S 365 A 304 A 306 E 318 E 422

C 198 O 279 I 266 N 182 Y 364

B 173 R 267 O 243 S 171 T 253

T 149 E 241 E 177 A 162 R 212

P 141 I 201 U 165 L 162 L 155

A 140 L 200 R 163 I 158 H 137

F 135 U 185 N 137 C 150 N 130

G 115 H 144 L 112 R 150 D 118

D 111 N 87 T 111 T 139 K 113

M 107 T 77 S 80 O 132 A 63

R 105 P 61 D 75 U 82 O 58

L 87 W 44 G 67 G 76 P 56

W 82 C 40 M 61 D 69 M 42

E 72 M 38 P 57 M 68 G 41

H 69 Y 22 B 56 K 55 S 36

V 43 D 20 C 56 P 50 C 31

O 41 B 16 V 49 V 45 F 26

N 37 S 16 Y 29 F 35 W 17

I 34 V 15 W 26 H 28 B 11

U 33 X 14 F 25 W 25 I 11

Q 23 G 11 K 12 B 24 X 8

J 20 K 10 X 12 Z 20 Z 4

K 20 F 8 Z 11 X 3 U 1

Y 6 Q 5 H 9 Y 3 J 0

Z 3 J 2 J 3 J 2 Q 0

X 0 Z 2 Q 1 Q 0 V 0

The second table almost invites you to identify possible start words that might have a high chance of

scoring at least one Green. SAINT, CRANE, SHINE, should be good candidates on this basis (none

of which were given by any of the interviewees). However, it is not possible to determine – just from

the data shown above – the actual probability that any of these words would deliver a green, since

the entries in each column are not independent of each other. (That is because there are only 2309

possible answer words, not 265). This hints at some of the problems of basing an automated

solution on letter frequencies.

Beyond the first, and in some cases, second attempt, none of the players I interviewed could

articulate the process by which they choose their subsequent attempt words. It is clear that many

are using a large mental ‘rule base’ relating to word structure. Some of these rules may have been

taught explicitly in early schooling (‘I before E except after C’, for example); but dozens, possibly

hundreds of other rules are just learned unconsciously over many years of English usage. Consider

the following real example from tackling Wordle 473 (5 Oct 2022):

Wordle Solver – A-level NEA Project by Richard Pawson

9

The word has scored one yellow and two greens. But without needing to run through a physical, or

mental, dictionary of all possible answers, a human player just knows that there is no possible word

ending in SR, so effectively they already have three greens:

Whether they are conscious using heuristics or not, many human players would then deduce – still

without considering specific possible words – that the last letter (if it cannot now be E) is most likely

to be a Y, a T, or an H, and that the first letter is a consonant. It is clear that human players are

considering far more than the simple letter frequency shown earlier (or an approximation thereof).

They are considering the pairing or grouping of letters, and/or their specific position within the

word.

Whether a player consciously adopts the ‘every attempt should be a possible answer’ rule or not, it

is clear to me that from the third attempt most players are always selecting a word that could be the

target. This might be because the number of remaining possible answers is reducing each time so

the chance of getting the answer at the next attempt increases. It might also be it can be difficult for

a human to identify any word that matches all the constraints – so that when you do identify a

matching word there may be a strong urge to try it out, without continuing the search. And what

would be the point of continuing the search, some players argue, when any matching word is as

likely as any other?

Nonetheless, human beings are astonishingly good at some forms of pattern matching. Crossword

enthusiasts often report that – given a few letters in their correct places – they have a strong sense

of ‘seeing’ the word. (It is perhaps less easy in Wordle, where the known letters are not always in the

correct place. Though, again, experienced crossword players can be good at ‘just seeing’ anagrams.)

Aural memory also plays a role: given the ending of a word, including a vowel sound, we find it easy

to list words that rhyme with it; not all the rhyming words will be an exact letter match, but it is still

a powerful capability when playing Wordle. Similarly, we can easily list words that start with the

same consonant-then-vowel sound. Going back to the example above, my aural memory does not

recall a common short word that sounds like _ARSY, or _ARST, so that leaves _ARSH, from which

my rhyming neuron suggests: HARSH, or MARSH.

Potential strategies for an automated Wordle solver
If the mental rule base of a good human player could be captured, then it would be possible to build

a kind of ‘expert system’ from it, either using a ready-made ‘inference engine’ or built as a bespoke

program. For the latter, the programming language Prolog would be an obvious choice, being a

‘declarative’ language where the programmer specifies the rules/transformations but leaves the

decision on how/when to apply them to the language’s run-time inference engine.

The challenge for this approach – as is often the case with expert systems – would be identifying the

rules. This challenge has encouraged the growth of ‘machine learning’ techniques. In theory, given a

large enough set of examples of actual Wordle games (i.e. the record of attempts and their

outcomes) it should be possible to apply a machine learning algorithm either to deduce the rules

explicitly for itself, or model them implicitly. The latter approach includes the use of a neural

network – where the resulting set of synaptic weights could execute the strategy (even for words

not previous seen in the training examples) without being able to articulate any rules.

Wordle Solver – A-level NEA Project by Richard Pawson

10

The chosen approach
The approach adopted for this project, however, does not use any of what would today be classed as

‘AI’ or ‘machine learning’ techniques. (Though, had this project been conducted 40 years ago it

would likely have been classified as ‘AI’ just given the nature of the problem being tackled. As

Marvin Minsky, one of the founding fathers of AI has been quoted as saying, ‘”AI” is the name we

give to all that stuff we don’t know how to do yet.’)

The chosen approach for this project uses ‘plain old programming’, and in a mainstream

programming language: C#. My objective is to use only the constructs that come with the C# 9

language implementation (released in 2020) - with no dependence on any additional framework,

library, or package. The reason for this choice is that I want to explore an algorithm that has no need

for fancier techniques, based on the following insight.

Most human players are – consciously or unconsciously, and whether playing in regular mode or

Hard – seeking to identify the most likely answer word. But a completely different strategy could be:

for each attempt including the first, just seek to eliminate as many words as possible, eventually

reducing the possible answers to one.

There are some circumstances where it may readily be seen that this alternative (I will call it

‘elimination’) strategy offers advantage. Consider the following game:

The player has had very good luck: getting four greens on the first attempt. There are limited

possibilities for the first letter. With luck the player will get the answer on the next attempt, and

surely it will be solved within six? Here’s how the game played out, though:

Fail! The answer was the only other possibility: WIGHT. Following the ‘elimination’ strategy,

however, the computer would identify the six remaining possible answers and pick a word that

eliminated as many as possible. SWARM, for example, though not a possible answer itself, would

reduce the remaining possibilities to two: either a yellow letter, or green S, would indicate the first

letter of the answer, or all-greys would indicate either FIGHT or LIGHT. Using the elimination

strategy means that the player foregoes the 1/6th probability of getting the answer (to this specific

puzzle) on the second attempt, but is instead guaranteed to get it on the third or fourth.

Wordle Solver – A-level NEA Project by Richard Pawson

11

This project will apply the ‘elimination’ strategy from the outset. For the each attempt it will

evaluate each of the 12,947 valid words to identify which one eliminates the remaining possible

answers. It will only ever use a possible answer as the attempt if that word happens to be the best

word for reducing possibilities (or at least was one of several words laying equal claim to being the

best). Eventually, this algorithm will reduce the remaining possibilities to one. The question is: in

how many attempts? After the mark for each attempt is given, it will determine how many of those

starting possible answers are still ‘in the running’ and start the next cycle with that.

The overall algorithm is a version of a well-known algorithm in computer science known as

‘minimax’, which is widely used in games, decision theory, statistics, and philosophy4.

How is the computer to determine the ‘best’ of the 12,947 words in each case, given that any

attempt can have many possible outcomes? In theory, given that an outcome for a given attempt

shows each of five letters as either Green, Yellow, or Grey, there are 243 (35) possible outcomes.

However, an outcome that shows four greens and one yellow is impossible – if the position of four

letters is known, the position of the fifth cannot be unknown. That leaves 238 theoretically possible

outcomes. As a game progresses the number of possible outcomes will steadily reduce.

In assessing each of the 12,974 valid words for the next attempt, we need to calculate the

distribution of possible outcomes for that word. We are not interested in the best possible outcome:

because best possible outcome will always be the word that just happens to be the correct answer.

Rather, we are interested in narrowing the field in one of two ways:

1) Selecting the word where the worst possible outcome for that word would leave the smallest

number of remaining possible answers.

2) Selecting the word where the (mathermatically) expected number of remaining possible

answer after the outcome would be the smallest.

In the second variant the mathematical concept of ‘expected value’ is defined as:

Σ p(o).n(o)

which may be read as: for each possible outcome o, the sum of the probability of getting that

outcome – p(o) – multiplied by the number of words remaining from that outcome – n(o).

A hypothesis to explore is that these two variants might optimise for different goals:

- If the goal is to minimise the maximum number of attempts taken to guess a word, then
perhaps the first definition might work best.

- If the goal is to minimise the average number of attempts taken to guess the word, then the
second definition might work better.

Hard mode

The algorithm as stated will not work in Hard mode, which would not, for example, permit SWARM as

the second attempt in the puzzle above. It is possible, however, that with a small modification it

could work in Hard mode. This just requires that the search for the attempt word that would

eliminate the most possibilities be restricted to the remaining possible answers. This possibility will

also be explored.

4 https://en.wikipedia.org/wiki/Minimax

https://en.wikipedia.org/wiki/Minimax

Wordle Solver – A-level NEA Project by Richard Pawson

12

Mock-up of the user interface

The popularity of the online Wordle game may – at least in part – be attributed to its user interface:

clean, simple, and clear. Anyone coming new to Wordle, but who is already familiar with mobile

phone apps, will likely figure out how to use it in seconds.

However, this project is not developing a system for such users: it is a scientific investigation, and

the sole intended user is the project author. Investing time and effort in a graphical user interface

like that of Wordle would add no benefit. Also, the role of the user in this project is not to view the

patterns of outcomes and thence to guess the word – the computer will be doing that. Here, the

user is simply there to give the feedback – to ‘mark’ the attempt words offered by the computer

against the target word. (The user might have set target word and evaluate the marking themselves,

or they might act as an intermediary between the live daily Wordle game and the solver program).

Even for a graphical user interface, designing a means to mark each letter of an attempt word as

green, yellow, or grey cannot be made intuitive. Perhaps the user could select on each letter in turn,

and for each one then click on one of three colours in a separate palette. Alternatively, clicking on a

letter could turn it grey; clicking twice could turn it yellow; three times green; a fourth time cycling

back to grey in case there is a need to correct an erroneous entry.

But why bother with any of this? All that is required is to enter five marks, corresponding to: an in-

place match (Green on the Wordle app); an out-of-place match (Yellow on the Wordle App); or a no-

match (Grey on the Wordle App). It would be simpler to use three non-alphabetic symbols, each

entered as a single keystroke, for example:

* for an in-place match

+ for an out-of-place match

_ for a no-match

And since the standard Console UI uses a monospace typeface, the symbols can be entered

underneath the system-generated ‘attempt’ word, and they will neatly line up with the characters

above, as shown in this sketch:

Sketch

Rationalisation for simple console UI

Console UI is efficient and effective

It is

After each attempt is presented by the Solver, the user simply types in five symbols immediately

underneath. Not pretty, but simple, effective, and efficient.

IDEAL
____+

CLOUD
_**__
GLOOP

FLOOR

Wordle Solver – A-level NEA Project by Richard Pawson

13

Adopting a functional approach to design and coding

Although technical implementation does not normally form part of the analysis, it is being included

here because it is an explicit objective of this project to adopt the ‘functional programming’ (FP)

approach – as far as is possible – within the C# language. The rationale for this is in part because I

wish to expand my skills in FP – given that in professional development circles, FP is widely

recognised as the next paradigm in programming, and its adoption is growing rapidly.

However, there is also a potential immediate benefit to this project. One of the claimed advantages

of adopting FP is that it facilitates parallel execution – provided that the host computer has multiple

processor cores. Since my laptop has four physical cores, I hope to demonstrate that the heavy

processing that the algorithm requires can take advantage of that. (The four physical cores in my

laptop are configured as eight ‘virtual’ cores. However, this further 2x split does not offer any

advantage to the kind of intense processing that this program will require: the advantage of virtual

cores is clearer when swapping frequently between different programs, not running one program as

parallel threads.)

Adopting FP means that the core functionality must be built exclusively from ‘pure’ functions.

Definition of a ‘pure’ function
Many constructs in programming that are referred to as ‘functions’ are not pure functions. For a

function to be pure:

• It must return a value (though this value may be a data structure).

• It must define parameters

• The returned value must be derived solely from the parameter values, deterministically. The

function must not depend on any other information coming from the system, such as global

variables, user input, random number generation, or the current date/time.

• It must not have any ‘side effects’: it must not make any changes outside the function, such

as changing a global variable, persisting a value to a file or database, or even just writing to

the screen. Changing any of the values or references passed in as a parameter would also be

a side effect. The only permissible effect of the function that is visible from the outside, is

the returned value.

User interface
In a pure FP programming language – such as Haskell – it is possible to implement a user interface

from pure functions. However, this is not possible in C# and other ‘mixed paradigm’ languages.

Therefore, the constraint of using FP approaches applies only to core functionality, not to the UI.

Hopefully though, the code to implement the simple UI sketched earlier can be kept very small.

Wordle Solver – A-level NEA Project by Richard Pawson

14

Coding the functions using functional programming idioms
A decision has also been taken not just to adopt an FP approach to the design of the core system,

but to the implementation also. This means adopting pure FP patterns or ‘idioms’ for the coding

itself. Specifically, the objective is that:

• All functions will be written using C#’s ‘expression syntax’ which requires that functions take

the form:

<ReturnType> FunctionName(<parameter definintions>) => <expression>;

For example

int Square(int x) => x * x;

which is equivalent to:

int Square(int x)

{

 return x * x;

}

Adopting the expression syntax is terser, while being just as easy to read (once you are

familiar with it). Moreover, it forces the writer to adopt other FP coding patterns because a

function written with expression syntax cannot include a ‘block’ of code (a sequence of

statements).

• Procedural-style loops (such as for and while) are not permitted in FP. Iteration can be

achieved by making functions recursive. However, I have set the additional objective of

writing no recursive functions, in order to show that all iteration on lists (and there will be

plenty of that) could be implemented entirely through ready-made ‘higher order functions’

including ‘map’, ‘filter’ and ‘fold’ (also called ‘reduce’). In C#, the ‘map’ concept is

implemented as the (LINQ) Select function and ‘filter’ as Where. The generic capability

‘fold/reduce’ is provided in C# as the Aggregate function, but there are also more specific

(and easier to use) versions of ‘fold/reduce’ including Count, Sum, Average, Min, Max. Other

standard C# higher-order functions that may be of use include OrderBy (a flexible sorting

capability) and GroupBy.

Wordle Solver – A-level NEA Project by Richard Pawson

15

Summary of SMART objectives

Ten ‘SMART’ (Specific, Measurable, Achievable, Realistic, Timely) objectives have been identified for

this project. Five are concerned with the functionality of the resulting system –the ‘external’ or

‘what’ perspective. The other five are concerned with the implementation of that functionality – the

‘internal’ or ‘how’ perspective, although for most projects the latter would not be considered

appropriate as objectives. However, the ‘functional programming’ approach (as explained in the

previous section) has been voluntarily adopted as an explicit objective – recognising that it would be

possible to achieve the first five objectives using purely procedural or object-oriented approaches.

The objectives are numbered here for reference only not to specify priority.

Objectives concerning functionality and usability of the resulting system
1. The system should be capable of solving the daily online Wordle puzzle, requiring the

investigating user only to map the inputs and outputs between the two systems, not to

provide any other assistance.

2. Prove that, across all possible target words for Wordle, the system will solve the puzzle in six

or fewer attempts in at least 97% of cases (gauged – from the interviews - to be equivalent

to a reasonably good human player).

3. Demonstrate the difference between adopting the ‘worst case’ and ‘expected’ alternative

variants of the algorithm (in terms of percentage of puzzles solved in six attempts, and the

average number of attempts taken, across all 2,309 possible target words).

4. Show that the algorithm could also solve puzzles in the ‘Hard mode’ setting, and determine

the effectiveness relative to 2, using the same criteria as given in 3.

5. Demonstrate that the minimalist user interface sketched previously, while designed only for

the author’s use, could be used by an external validator following simple written

instructions.

Objectives concerning the implementation
6. All core functionality (everything except the minimal user interface code) to be provided by

‘pure’ functions. (see Definition of a ‘pure’ function.)

7. All core functions to comprise a single statement returning the value of an expression.

8. All core functions to be implemented without need for recursive calls.

9. Demonstrate that the functional implementation can be parallelised for faster performance.

10. Provide 100% unit testing coverage for core functions.

Wordle Solver – A-level NEA Project by Richard Pawson

16

Design

Identifying the best word for the next attempt –

algorithm and data structures

The following describes the proposed algorithm for finding the next ‘best attempt’ word, in a little

more detail:

1. After each attempt, take the list of possible answers that remain valid, i.e. are consistent

with the marks given for all attempts so far. (For the first attempt this will be the list of 2,309

possible answer words used in the official game of Wordle).

2. Evaluate each of the 12,947 valid words as a possible next attempt. For each one, evaluate it

as an attempt against the hypothetical target of each one of those remaining possible

answers and group them by the outcome (each ‘outcome’ being a specific pattern of five

Green/Yellow/Grey marks).

3. For each of the outcomes resulting from the previous step (which will always be less than or

equal to 238) determine how many possible answers that outcome would leave.

4. Determine the worst outcome for each of the 12,947 valid words if selected as the next

attempt.

5. The selected attempt should be the word (out of 12,947) where its worst outcome would

leave the smallest number of remaining possible answers.

6. If the calculation would result in several potential attempt words with equal outcome, then

if any of them happens also to be in the list of remaining possible answers (see step 1 above)

then pick one of those words – it does not matter which.

The adopted design involves five functions, as shown in the dependency hierarchy below:

Wordle Solver – A-level NEA Project by Richard Pawson

17

The following table defines the new functions in more detail:

Function name Arguments supplied Returns

BestAttempt All possible answers at the
current state of the puzzle.
All valid attempt words.

The single word from the valid
attempt words that represents
the best option.

BetterOf Two attempt words being
considered, each paired
with its ‘count’ (as defined
above).
The possible answers at
the current state of the
puzzle (needed to help
choose between two
words with the same count
– see point 6. above)

Returns the better of the two
words, still paired with its count.

AllRemainingWordCounts All possible answers at the
current state of the puzzle.
All valid attempt words.

Each attempt word paired with
the count of possible answers
that would remain if that
attempt word was used and
receive the worst possible
outcome (mark).

WordCountRemainingAfterAttempt List of possible answer
words at the current state
of the puzzle.
Attempt word.

Return the number of possible
answers that could remain after
this attempt. (See note below
about alternative
implementations).

MarkAttempt Attempt word.
Target word.

5 character string with symbols

*,+,_ indicating in-place match,
out-of-place match, and no-
match

Alternative variants of the algorithm
The two variants on the main algorithm proposed in the Analysis section require only different

implementations of the function WordCountRemainingAfterAttempt. Nothing else needs to change.

The two variants are:

1. Return the number of remaining possible answers resulting from the worst outcome (mark)

given to the attempt word.

2. Return the (mathematically) expected word count remaining after the attempt – effectively

the weighted average of all possible outcomes.

Wordle Solver – A-level NEA Project by Richard Pawson

18

Marking an attempt word against a target – algorithm and

data structures

MarkAttempt plays a critical role in the implementation of this algorithm. It may be called many

thousands of times in the identification of the next best attempt. Surprisingly, designing this function

was much harder than I expected. The design outlined below seems quite simple and elegant now –

but it evolved from a lot of much more complex and ugly attempts!

The official rules of Wordle are expressed concisely, but it turns out that marking an attempt is not

as simple as it sounds. The complexity arises principally from repeated letters – either repeated in

the target word, or in the attempt word, or both. If we evaluate the five letters of the attempt word

one at a time, then we need to make sure that the evaluations do not trample over each other, i.e.

do not count a letter in the target word more than once.

It is helpful to consider how a human might mark an attempt:

Target word: FOLLY

Attempt word: FLOOD

An effective approach is to start by identifying the in-place matches (‘Greens’). Working through the

attempt word one letter at a time, if it matches the corresponding letter in the target, the letter in

the attempt word is marked green, and, importantly, the corresponding letter in the target is

somehow also marked (shown as red below) to indicate that it has been ‘used’. This is so that the

latter in the target word is not accidentally matched again when evaluated for yellows:

Target word: FOLLY

Attempt word: FLOOD

Now considering the yellows, for each letter in the attempt word (we can skip those letters already

marked green) we need to see if this letter can be found in the letters of the target word, not

already excluded (red in the notation above). The L in FLOOD in has a match (actually two) in

OLLY. So we mark the letter attempt word as yellow, but must also strike off one L (it doesn’t

matter which because all greens have already been processed) from the target word, so that that

same letter can’t be counted twice:

Target word: FOLLY

Attempt word: FLOOD

Similarly, we mark the first O in FLOOD as yellow and strike out the O from FOLLY.

Target word: FOLLY

Attempt word: FLOOD

The importance of this striking-out becomes more obvious when we come to the fourth letter (the

second O). Because the O in FOLLY has already been used to match the first O, there is no remaining

(uncoloured) O in FOLLY, so the second O in FLOOD is marked grey and not yellow. After then

marking the D as grey, we end up with:

Target word: FOLLY

Wordle Solver – A-level NEA Project by Richard Pawson

19

Attempt word: FLOOD

The above description would translate quite naturally into procedural code. But given the self-

imposed constraints of FP, we need to find a way to express this in strictly functional terms. Consider

even the idea of ‘evaluate the greens then evaluate the yellows’: in procedural coding that suggests

sequential function calls to, say, EvaluateGreens and EvaluateYellows. In FP, this could be achieved

by holding those two functions in a list and then iterating through that list of functions using, say,

the ‘fold’ function. However, a simpler option in this case is just to ‘compose’ the two functions:

EvaluateYellows ● EvaluateGreens

C# doesn’t have a composition operator (like ● above). It is possible to write one5 but unless it turns

out that this will be needed in several places, it is easier for one case simply to write something like

this:

EvaluateYellows(EvaluateGreens(…))

In other words, call EvaluateYellows using the result of calling EvaluateGreens with the appropriate

arguments (…).

We also need to think about the way to represent the arguments and the return value of these

functions. It is clear that EvaluateGreens, at least, must pass back both the updated attempt word

and the updated target word, which suggests a 2-tuple. What about the colours – green, yellow, and

grey for the attempt, and our chosen colour of red for the letters in the target that are now used up

(or ‘struck out’)? It would be possible to design a data structure that held five letters and a colour for

each, but this is unnecessary. Once a letter position is marked up in a colour, we do not need to

know its letter value anymore. So we could simply replace the letter with a non-alphabetic symbols

instead.

Given that in the sketch of the console UI (see Analysis - Mock-up of the user interface) we have

already decided on the symbols *, +, _ to allow the user to specify an in-place, out-of-place, and no-

match mark respectively, why not use those same symbols in the core functional logic also? They are

clear to read (by the programmer in this case) and this solution avoids unnecessary ‘mapping’

between the internal representation and the public (user) presentation. We might even call this the

‘Richard Rogers school of architecture’ since his buildings famously expose the services and support

structure on the outside.We just need one additional symbol to represent what we have been

showing as ‘red’ in the target word, so:

* for green

+ for yellow

_ for grey

. for red

Returning to the previous example, EvaluateGreens would take "FLOOD" and "FOLLY" as arguments

and return the tuple ("*LOOD", ".OLLY"). These two values would need to be passed into

EvaluateYellows which would return "*++__".

5 https://stackoverflow.com/questions/5264060/does-c-sharp-support-function-composition

https://stackoverflow.com/questions/5264060/does-c-sharp-support-function-composition

Wordle Solver – A-level NEA Project by Richard Pawson

20

Functional decomposition of the full marking algorithm
We have already seen that the MarkAttempt function will delegate to the functions EvaluateGreens

and EvaluateYellows. The diagram below shows a complete functional decomposition:

The following table specifies what is required of each of the functions shown above, from a purely

external perspective:

Wordle Solver – A-level NEA Project by Richard Pawson

21

Function name Arguments supplied Returns

MarkAttempt attempt word
target word

5 character string with symbols *,+,_
indicating in-place match, out-of-
place match, and no-match

EvaluateGreens attempt
target

2-tuple comprising:
attempt with all in-place matches

replaced by symbol *
target with all in-place matches

replaced by symbol .
EvaluateYellows attempt, assumed to be already

marked up by EvaluateGreens.
target, assumed to be already
already marked up by
EvaluateGreens.

2-tuple comprising:
Input attempt word with all out-of-

place matches replaced by symbol +
Input target word with all out-of-

place matches replaced by symbol .
SetAttemptIfGreen attempt.

target.
charNo character number.

attempt with character replaced by

symbol * if it is an in-place match
with target

SetTargetIfGreen attempt word.
target word.
charNo character number.

target with character replaced by

symbol . if it is an in-place match
with attempt

SetAttemptIfYellow attempt and target, both
assumed to have any in-place
matches, and any previous out-
of-place already marked.
charNo character number.

attempt word with character replaced

by symbol + if it is an out-of-place
match with target

SetTargetIfYellow attempt and target, both
assumed to have any in-place
matches, and any previous out-
of-place already marked.
Character number.

target with character number

replaced by symbol . if it is an out-of-
place match with attempt

IsAlreadyMarkedGreen Attempt
charNo

true if the attempt word has the *
character in the specified character
number

IsGreen attempt
target
charNo.

true if the specified character
number holds the same letter in both
words

IsYellow attempt
targetcharNo

true if the specified character
number of the attempt is contained in
the unused letters of the target

SetChar word (any5-letter word)
charNo
newChar, new character.

Input word with the specified
character number replaced by the
new character

Wordle Solver – A-level NEA Project by Richard Pawson

22

Console user interface program - flow

The core functionality will be called by an interactive program, designed to apply the Wordle Solver

to the solution of a single Wordle puzzle – in particular to the daily online Wordle puzzle. The

program will have a very simple, ‘console’, user interface that follows the sketch shown in the

Analysis section (see Mock-up of the user interface). The required flow of the program is shown

diagrammatically below:

For the last step in the loop, we will need a function named PossibleAnswersAfterAttempt, specified

as follows:

Function Name Arguments supplied Returns

PossibleAnswersAfterAttempt List of possible answer
words prior to this next
attempt.
Attempt word
Mark awarded (also known
as ‘outcome’)

List of possible answers remaining
from the input list that are still
compatible with the mark
awarded for the specified attempt
word.

Wordle Solver – A-level NEA Project by Richard Pawson

23

This ‘main’ program will call the core functions specified earlier. This design will ensure that the UI

code calls the core functions, but never vice versa. This last point is essential to preserving the purity

of the core functions. Also, this arrangement adopts the recognised design principle of ‘separation of

concerns’.6 It means that the core functionality could easily be re-used with a different user

interface, or called directly by a different program through an ‘Application Programming Interface’

(API). The complete ‘dependency graph’ is shown below:

6 https://en.wikipedia.org/wiki/Separation_of_concerns

https://en.wikipedia.org/wiki/Separation_of_concerns

Wordle Solver – A-level NEA Project by Richard Pawson

24

Technical Solution

Video showing the working solution

A video showing the working solution and with a brief overview of the code may be viewed here:
https://www.loom.com/share/75b11691603d485fb7b2a356b4e51e94

Source code repository

Anyone wishing to run this program for themselves may obtain my complete solution from GitHub7,

including the full data definitions, and instructions on how to run the solution.

The final version of the resulting solution consists of just sixteen functions, each written as a single

line of code (though several wrap to two or three lines on the page), plus just nine lines of

procedural code defining the whole of the ‘main program’ - the Console user interface.

The complete code fits, comfortably, on just one page and is shown in full overleaf, with the

exception of the constant data definitions (the two very long lists of AllPossibleAnswersand

ValidWords) which are shown overleaf only as stubs.

The code is followed by a commentary, explaining the role of each function and the specific coding

techniques employed.

7 https://github.com/MetalUp/WordleSolver

https://www.loom.com/share/75b11691603d485fb7b2a356b4e51e94

Wordle Solver – A-level NEA Project by Richard Pawson

25

Complete code for the Wordle Solver
using static System.Linq.Enumerable;

static bool IsGreen(string attempt, string target, int n) => target[n] == attempt[n];

static string SetChar(string word, int n, char newChar) =>
 word.Substring(0, n) + newChar + word.Substring(n + 1);

static string SetAttemptIfGreen(string attempt, string target, int n) =>
 IsGreen(attempt, target, n) ? SetChar(attempt, n, '*') : attempt;

static string SetTargetIfGreen(string attempt, string target, int n) =>
 IsGreen(attempt, target, n) ? SetChar(target, n, '.') : target;

static (string attempt, string target) EvaluateGreens(string attempt, string target) =>
 Range(0, 5).Aggregate((attempt, target), (a, n) =>
 (SetAttemptIfGreen(a.attempt, a.target, n), SetTargetIfGreen(a.attempt, a.target, n)));

static bool IsYellow(string attempt, string target, int n) => target.Contains(attempt[n]);

static bool IsAlreadyMarkedGreen(string attempt, int n) => attempt[n] == '*';

static string SetAttemptIfYellow(string attempt, string target, int n) =>
 IsAlreadyMarkedGreen(attempt, n) ? attempt : IsYellow(attempt, target, n) ?
 SetChar(attempt, n, '+') : SetChar(attempt, n, '_');

static string SetTargetIfYellow(string attempt, string target, int n) =>
 IsAlreadyMarkedGreen(attempt, n) ? target : IsYellow(attempt, target, n) ?
 SetChar(target, target.IndexOf(attempt[n]), '.') : target;

public static (string attempt, string target) EvaluateYellows(string attempt, string target) =>
 Range(0, 5).Aggregate((attempt, target), (a, n) =>
 (SetAttemptIfYellow(a.attempt, a.target, n), SetTargetIfYellow(a.attempt, a.target, n)));

public static string MarkAttempt(string attempt, string target) =>
 EvaluateYellows(EvaluateGreens(attempt, target).attempt,
 EvaluateGreens(attempt, target).target).attempt;

static IEnumerable<string> PossibleAnswersAfterAttempt(IEnumerable<string> prior, string attempt,
string mark) =>
 prior.Where(w => MarkAttempt(attempt, w) == mark).ToList();

static int WordCountRemainingAfterAttempt(IEnumerable<string> possibleAnswers, string attempt) =>
 possibleAnswers.GroupBy(w => MarkAttempt(attempt, w)).Max(g => g.Count());

static IEnumerable<(string word, int count)> AllRemainingWordCounts(IEnumerable<string> possAnswers,
IEnumerable<string> possAttempts) =>
 possAttempts.AsParallel().Select(w => (w, WordCountRemainingAfterAttempt(possAnswers, w)));

static (string word, int count) BetterOf((string word, int count) word1, (string word, int count)
word2, IEnumerable<string> possAnswers) =>
 (word2.count < word1.count) || (word2.count == word1.count && possAnswers.Contains(word2.word)) ?
 word2 : word1;

static string BestAttempt(IEnumerable<string> possAnswers, IEnumerable<string> possAttempts) =>
 AllRemainingWordCounts(possAnswers, possAttempts).
 Aggregate((bestSoFar, next) => BetterOf(bestSoFar, next, possAnswers)).word;

//Data definitions (stubs only - See Appendix I)
var ValidWords = new List<string> {};
var AllPossibleAnswers = new List<string> {};

//UI code:
var possible = AllPossibleAnswers;
var outcome = "";
while (outcome != "*****")
{
 var attempt = BestAttempt(possible, ValidWords);
 Console.WriteLine(attempt);
 outcome = Console.ReadLine();
 possible = PossibleAnswersAfterAttempt(possible, attempt, outcome).ToList();
}

Wordle Solver – A-level NEA Project by Richard Pawson

26

Commentary on the core functional code
using static System.Linq.Enumerable;

This just allows the Range function to be used without having to qualify it as Enumerable.Range each

time.

static bool IsGreen(string attempt, string target, int n) => target[n] == attempt[n];

Note that all the functions in the solution are marked static because they are standalone functions,
not object instance methods.

static string SetChar(string word, int n, char newChar) =>
 word.Substring(0, n) + newChar + word.Substring(n + 1);

This is a simple ‘helper’ method. It is an example of using the DRY (Don’t Repeat Yourself) principle:

to avoid repeating the same chunk of code in four different later function calls.

static string SetAttemptIfGreen(string attempt, string target, int n) =>
 IsGreen(attempt, target, n) ? SetChar(attempt, n, '*') : attempt;

This uses the C# ‘ternary operator’, which may be read as:

‘If IsGreen(attempt, target, n) is true, return the result from calling SetChar(attempt, n, '*'),

otherwise return the (unmodified) attempt’.

public static string SetTargetIfGreen(string attempt, string target, int n) =>
 IsGreen(attempt, target, n) ? SetChar(target, n, '.') : target;

This is similar to SetAttemptIfGreen but applies to the target word, and replacing the match with the

. character.

static (string attempt, string target) EvaluateGreens(string attempt, string target) =>
 Range(0, 5).Aggregate((attempt, target), (a, n) =>
 (SetAttemptIfGreen(a.attempt, a.target, n), SetTargetIfGreen(a.attempt, a.target, n)));

Here the ‘marked up’ versions of the input attempt and target words are returned as a named 2-

tuple: (string attempt, string target). The advantage of using a named tuple is that code that

uses it may access individual elements by name – attempt or target – rather than by the generic

properties names of Item1, Item2.

The implementation uses a higher-order function, Aggregate, which is the C# implementation of the

generic ‘fold’ pattern. Aggregate is an extension method operating on any enumerable data

structure (such as a list). Here, we apply aggregate to an enumerable of integer values 0 to 4 using

the function Range(0, 5).

The first argument passed into Aggregate is the starting point, also known as the ‘seed’ for the

folding. Here it is a 2-tuple – (attempt, target) – holding the initial values of the two words. This is

followed by a ‘lambda’:

(a, n) => (SetAttemptIfGreen(a.Item1, a.Item2, n), SetTargetIfGreen(a.Item1, a.Item2, n))

This lambda is applied to each member of the enumerable in turn. a represents the value of the

‘aggregator’ at each call, and n will be the next value from the enumerable (i.e. one of 0,1,2,3,4).

The lambda returns a 2-tuple made up of the marked up version of the attempt and target

respectively – and this will replace the current value of the aggregator – a. We can see, then, that

the aggregator always processes a tuple of two strings, starting with the ‘seed’ value, and ending as

the attempt and target words with each green match marked as * and . respectively.

Wordle Solver – A-level NEA Project by Richard Pawson

27

static bool IsYellow(string attempt, string target, int n) => target.Contains(attempt[n]);

IsYellow is equivalent to IsGreen but note that the implementation uses Contains to see if the

specified attempt letter exists in the target word. This will only work correctly because any letter in

the target word that has already been used by a green match, or a previous yellow match, will no

longer be a letter: it will have been replaced by .

static bool IsAlreadyMarkedGreen(string attempt, int n) => attempt[n] == '*';

This is a simple ‘helper’ method. It is used only once, and hence saves no duplication, but it does

make the next (more complex) function easier to read:

static string SetAttemptIfYellow(string attempt, string target, int n) =>
IsAlreadyMarkedGreen(attempt, n) ? attempt : IsYellow(attempt, target, n) ?
 SetChar(attempt, n, '+') : Set(attempt, n, '_');

Broadly equivalent in role to SetAttemptIfGreen, the implementation of SetAttemptIfYellow uses

two ternary operators, nested. This may be re-written as pseudo code:

If character number n in the attempt word is already marked green just return the attempt

unmodified (as it can’t also be yellow).

If not, then if character n is yellow, set the character to '+' (indicating a yellow), otherwise

set it to '_' (indicating a grey) because evaluation of that character in the attempt word has

been completed with no matches.

static string SetTargetIfYellow(string attempt, string target, int n) =>
 IsAlreadyMarkedGreen(attempt, n) ? target : IsYellow(attempt, target, n) ?
 SetChar(target, target.IndexOf(attempt[n]), '.') : target;

Similar to SetAttemptIfYellow but applying to the target word, and replacing the matched character

with the . character.

public static (string attempt, string target) EvaluateYellows(string attempt, string target) =>
 Range(0, 5).Aggregate((attempt, target), (a, n) =>
 (SetAttemptIfYellow(a.attempt, a.target, n), SetTargetIfYellow(a.attempt, a.target, n)));

Equivalent to EvaluateGreens.

static string MarkAttempt(string attempt, string target) =>
 EvaluateYellows(EvaluateGreens(attempt, target).attempt,
 EvaluateGreens(attempt, target).target).target;

MarkAttempt calls EvaluateYellows on the results of calling EvaluateGreens. Note however that since

the latter returns a 2-tuple, EvaluateGreens is being called twice and the two values in the tuple

(being the modified attempt and target words respectively) are being extracted with .attempt and

.target. Having to call the function twice is not elegant – it is the first example encountered in this

project of current limitations in C# for supporting FP idioms. Pure FP languages such as Haskell

typically have better patterns for deconstructing a tuple.

static IEnumerable<string> PossibleAnswersAfterAttempt(
 IEnumerable <string> prior, string attempt, string mark) =>
 prior.Where(w => MarkAttempt(attempt, w) == mark);

PossibleAnswersAfterAttempt is a surprisingly simple implementation, using the .Where function (the

C# implementation of the generic ‘filter’ pattern). Where is applied to a the possible answers prior to

the attempt, and applies a filter defined by the lambda w => MarkAttempt(attempt, w) == mark such

that the list is filtered down to just those words that would have been marked the same was as the

actual mark given to the attempt.

Wordle Solver – A-level NEA Project by Richard Pawson

28

static int WordCountRemainingAfterAttempt(IEnumerable<string> possibleAnswers, string attempt) =>
 possibleAnswers.GroupBy(w => MarkAttempt(attempt, w)).Max(g => g.Count());

The role of this function is to count how many possible answer words would be left by the worst

possible outcome from a given attempt, against a known set of possibleWords. (This is the first of the

two algorithm variants proposed earlier – the other variant is shown in the Testing section - see

Comparing the two variants of the algorithm, plus ‘hard’ mode). It does this by applying the

MarkAttempt function to each of those possible words using the lambda w => MarkAttempt(attempt,

w)). However, instead of applying this using the Select function (the C# implementation of the

generic ‘map’ function) it uses GroupBy. The latter arranges all the input words into groups, where

each word in a group would have the same result from applying MarkAttempt. The function Max is

then applied to each of the groups, to identify the group with the maximum number of member

words, using g.Count().

static IEnumerable<(string word, int count)> AllRemainingWordCounts(IEnumerable<string> possAnswers,
IEnumerable<string> possAttempts) =>
 possAttempts.AsParallel().Select(w => (w, WordCountRemainingAfterAttempt(possAnswers, w)));

IEnumerable<T> is an interface that is implemented by any data structure that a calling function can

iterate through by repeated asking for the ‘next’ element – List being one example. In this case the

type T is a named 2-tuple – (string word, int count) . The AllRemainingWordCounts function uses

WordCountRemainingAfterAttempt and Select, which is the C# implementation of the more general

idea of ‘map’. It uses these to generate an enumerable where the type is a named 2-tuple (string

word, int count) so that each possible attempt word is paired with the number of possible answers

that would remain from the worst outcome if that attempt word was used.

static (string word, int count) BetterOf((string word, int count) word1, (string word, int count)
word2, IEnumerable<string> possAnswers) =>
 (word2.count < word1.count) || (word2.count == word1.count && possAnswers.Contains(word2.word)) ?
 word2 : word1;

This is a simple function that chooses the better of two words being considered as the next attempt.

In general it will choose the word which has the lower count i.e. that would leave the least remaining

possible answers from the worst outcome (mark). However, should the two words both have the

same count then it will favour the one (if any) that is also a possible answer word.

static string BestAttempt(IEnumerable<string> possAnswers, IEnumerable<string> possAttempts) =>
 AllRemainingWordCounts(possAnswers, possAttempts).Aggregate((bestSoFar, next) =>
 BetterOf(bestSoFar, next, possAnswers)).word;

The final, top-level, function now takes the results from AllRemainingWordCounts and finds the best

one. It uses Aggregate (‘fold/reduce’) to go through all the possible attempts applying the BetterOf

function to compare the next to the bestSoFar (both being 2-tuples). Finally it extracts the word part

of the final bestSoFar 2-tuple to return the best attempt as a string.

Wordle Solver – A-level NEA Project by Richard Pawson

29

Commentary on the user interface code

We can now look at how these functions are used within the user interface (procedural code)

The code first defines and initializes two ‘variables’:

var possible = AllPossibleAnswers;
var outcome = "";

These are conventional ‘procedural style’ variables meaning that the same variable may be re-

assigned with different values during the run. (In FP, the term ‘variables’ refers to parameters – the

value of which will typically vary between different calls to the function, but in each such call it is

actually a different variable. FP ‘variables’ are never re-assigned). We need these procedural-style

variable in the UI in order to run the procedural loop that follows with the same variables having

different values each pass of the loop.

while (outcome != "*****")
{
 …
}

This loop simply executes until an outcome of "*****" (five greens) has been achieved. It deliberately

does not enforce the Wordle rule of maximum six attempts because I want to know how many

attempts the current algorithm would taken even if it failed to identify the target within six

attempts.

var attempt = BestAttempt(possible, ValidWords);

First time around the loop the first argument will be list of all 2309 possible answers but with each

subsequent iteration this list will (hopefully) have been filtered down further. However, the second

argument will always be the fixed list of 12,947 valid words. This makes for an expensive calculation

but it means that the algorithm always has the option to use any word that would most reduce the

remaining words, irrespective of whether that word was a possible answer itself.

Incidentally, because all the functions are deterministic, the calculation of the best ‘first attempt’

should produce the same word each time the program is run: so, like many human players, the

program will have a ‘favourite’ start word. It will be interesting to see which word it chooses.

 Console.WriteLine(attempt);
 outcome = Console.ReadLine();

Write the attempt word and then read in the user-entered outcome (marks).

possible = PossibleAnswersAfterAttempt(possible, attempt, outcome).ToList();

Recalculate the possible answers based on the attempt and the user specified outcome.

Wordle Solver – A-level NEA Project by Richard Pawson

30

Testing

The Wordle solver program was extensively tested, and at five different levels.

1) Every single function was unit tested, as it was written.

2) The whole program was tested to ensure that it ran correctly and that it was actually

capable of solving the official, daily Wordle puzzle – 10 days in a row.

3) The program was tested for performance – measuring how long the computations took –

and opportunities for improving the performance were explored.

4) With the benefit of the performance optimisations above, the effectiveness of the Solver

was tested by building a small test loop that would simulate the solving of a Wordle puzzle

for each one of the possible 2309 target words that may be set. This would allow the

compilation of accurate statistics, showing the percentage of target words that the program

could solve within six guesses, the breakdown within that of 1, 2, 3, 4, 5, or 6 attempts, and

the average number of attempts.

5) The two variants of the algorithm were implemented and their effectiveness compared,

then the better of the two was also run against a simulation of Wordle in ‘Hard mode’.

The following sub-sections expand on each of these five levels of testing.

Wordle Solver – A-level NEA Project by Richard Pawson

31

Writing executable unit tests for all functions

All the functions have been thoroughly unit tested, by writing unit tests that execute under an

automated unit testing framework (NUnit). This is good practice for any software development, not

only to prove that the code works correctly but to permit functions to be ‘re-factored’ (improved in

the implementation without changing the functionality) without fear of breaking the system.

However, unit testing is especially relevant to functional programming for three reasons:

1) It is easier to write unit tests for pure functions, because such functions have no external

dependencies, nor any side effects: each test just needs to call the function with specified

parameters and then compare the returned result to the value that would be expected.

2) There is a higher reward from unit testing in FP, because if pure functions A and B are both

correct, then the ‘combination’ of those functions is correct. This is not true of less rigorous

forms of coding – because of potential side effects and/or external dependencies. One of the

several problems resulting from mixing up core functionality with input/output code is that

it becomes extremely difficult to write executable unit tests.

3) One downside to FP is that debugging of an individual functions can be harder. With

procedural coding it is easy to put a breakpoint within a loop, in FP it is not always possible

to break into an iteration implemented using a map, filter, fold or other higher level

function operating on an enumerable. That said, using those higher order functions means

that you write much less code, and have much less scope for making the same kind of errors

(e.g. ‘off-by-one’ errors) that are commonly made in procedural coding. Thorough unit

testing gives you the confidence that your function is working correctly from the outside-in

rather than working from the inside-out.

Each test covers one function, but with multiple test cases. The screenshot below shows all the tests

passing (‘in the green’) running in Visual Studio. This is followed by the code for all 16 test methods.

Wordle Solver – A-level NEA Project by Richard Pawson

32

[TestMethod]
public void TestIsGreen()
{
 Test("ABCDE", "A____", 0, true);
 Test("ABCDE", "____E", 4, true);
 Test("ABCDE", "_A___", 1, false);
 Test("BABBB", "B____", 1, false);

 void Test(string attempt, string target, int charNo, bool expected)
 {
 Assert.AreEqual(expected, IsGreen(attempt, target, charNo));
 }
}

[TestMethod]
public void TestSetChar()
{
 Test("ABCDE", 0, '_', "_BCDE");
 Test("ABCDE", 4, '_', "ABCD_");

 void Test(string word, int charNo, char newChar, string expected)
 {
 Assert.AreEqual(expected, SetChar(word, charNo, newChar));
 }
}

[TestMethod]
public void TestSetAttemptIfGreen()
{
 Test("ABCDE", "ABCDE", 0, "*BCDE");
 Test("ABCDE", "ABCDE", 4, "ABCD*");
 Test("BBCDE", "ABCDE", 0, "BBCDE");
 Test("ABCDE", "AACDE", 0, "*BCDE");

 void Test(string attempt, string target, int charNo, string expected)
 {
 Assert.AreEqual(expected, SetAttemptIfGreen(attempt, target, charNo));
 }
}

[TestMethod]
public void TestSetTargetIfGreen()
{
 Test("ABCDE", "ABCDE", 0, ".BCDE");
 Test("ABCDE", "ABCDE", 4, "ABCD.");
 Test("BBCDE", "ABCDE", 0, "ABCDE");
 Test("ABCDE", "AACDE", 0, ".ACDE");

 void Test(string attempt, string target, int charNo, string expected)
 {
 Assert.AreEqual(expected, SetTargetIfGreen(attempt, target, charNo));
 }
}

[TestMethod]
public void TestEvaluateGreens()
{
 Test("ABCDE", "AXXXX", ("*BCDE", ".XXXX"));
 Test("ABCDE", "XXXXE", ("ABCD*", "XXXX."));
 Test("ABCDE", "ABCDE", ("*****", "....."));
 Test("AACDE", "AXXXX", ("*ACDE", ".XXXX"));
 Test("ABCDE", "AAXXX", ("*BCDE", ".AXXX"));

 void Test(string attempt, string target, (string, string) expected)
 {
 Assert.AreEqual(expected, EvaluateGreens(attempt, target));
 }
}

Wordle Solver – A-level NEA Project by Richard Pawson

33

[TestMethod]
public void TestIsYellow()
{
 Test("ABCDE", "____A", 0, true);
 Test("ABCDE", "____A", 4, false);
 Test("ABCDE", "___AA", 0, true);
 Test("AACDE", "_A___", 1, true);
 Test("AACDE", "__A__", 1, true);

 void Test(string attempt, string target, int charNo, bool expected)
 {
 Assert.AreEqual(expected, IsYellow(attempt, target, charNo));
 }
}

[TestMethod]
public void TestIsAlreadyMarkedGreen()
{
 Test("AB*DE", 2, true);
 Test("AB*DE", 0, false);
 Test("AB*DE", 4, false);
 Test("*BCD*", 2, false);
 Test("*BCD*", 0, true);
 Test("*BCD*", 4, true);

 void Test(string attempt, int n, bool expected)
 {
 Assert.AreEqual(expected, IsAlreadyMarkedGreen(attempt, n));
 }
}

[TestMethod]
public void TestSetAttemptIfYellow()
{
 Test("ABCDE", "EABCD", 0, "+BCDE");
 Test("ABCDE", "EABCD", 4, "ABCD+");
 Test("ABCDE", "BAAAA", 0, "+BCDE");
 Test("AAAAB", "EABBB", 4, "AAAA+");

 void Test(string attempt, string target, int charNo, string expected)
 {
 Assert.AreEqual(expected, SetAttemptIfYellow(attempt, target, charNo));
 }
}

[TestMethod]
public void TestSetTargetIfYellow()
{
 Test("ABCDE", "EABCD", 0, "E.BCD");
 Test("ABCDE", "EABCD", 4, ".ABCD");
 Test("ABCDE", "BAAAA", 0, "B.AAA");
 Test("AAAAB", "EABEA", 4, "EA.EA");
 Test("AAAAB", "EABBB", 4, "EA.BB");
 Test("*BCDE", "*BCDA", 4, "*BCDA");

 void Test(string attempt, string target, int charNo, string expected)
 {
 Assert.AreEqual(expected, SetTargetIfYellow(attempt, target, charNo));
 }
}

Wordle Solver – A-level NEA Project by Richard Pawson

34

[TestMethod]
public void TestEvaluateYellows()
{
 Test("ABCDE", "XAXXX", ("+____", "X.XXX"));
 Test("ABCDE", "XXXXA", ("+____", "XXXX."));
 Test("ABCDE", "XXXXE", ("____+", "XXXX."));
 Test("ABCDE", "XAAXX", ("+____", "X.AXX"));
 Test("AACDE", "XAXXX", ("+____", "X.XXX"));
 Test("ABCDE", "BCDEA", ("+++++", "....."));

 void Test(string attempt, string target, (string, string) expected)
 {
 Assert.AreEqual(expected, EvaluateYellows(attempt, target));
 }
}

[TestMethod]
public void TestMarkAttempt()
{
 Test("ABCDE", "XXXXX", "_____");
 Test("ABCDE", "BCDEA", "+++++");
 Test("ABCDE", "ABCDE", "*****");
 Test("SAINT", "LADLE", "_*___");
 Test("IDEAL", "LADLE", "_++++");
 Test("CABAL", "RECAP", "+__*_");
 Test("CABAL", "RECAP", "+__*_");
 Test("COLON", "GLORY", "_++__");

 void Test(string attempt, string target, string expected)
 {
 Assert.AreEqual(expected, MarkAttempt(attempt, target));
 }
}

[TestMethod]
public void TestPossibleAnswersAfterAttempt()
{
 var prior = new List<string> { "ABCDE", "BCDEA", "CDEAB", "DEABC", "EABCD" };
 Test(prior, "AAAAA", "*____", "ABCDE");
 Test(prior, "AXXXX", "+____", "BCDEA", "CDEAB", "DEABC", "EABCD");
 Test(prior, "AXXBX", "+__+_", "BCDEA", "CDEAB", "EABCD");

 void Test(List<string> prior, string attempt, string mark, params string[] expected)
 {
 CollectionAssert.AreEqual(expected, PossibleAnswersAfterAttempt(prior, attempt,
mark).ToList());
 }
}

[TestMethod]
public void TestWordCountRemainingAfterAttempt()
{
 var prior = new List<string> { "ABCDE", "BCDEA", "CDEAB", "DEABC", "EABCD" };
 Test(prior, "AAAAA", 1);
 Test(prior, "AXXXX", 4);
 Test(prior, "XXXXX", 5);

 void Test(List<string> prior, string attempt, int expected)
 {
 Assert.AreEqual(expected, WordCountRemainingAfterAttempt(prior, attempt));
 }
}

Wordle Solver – A-level NEA Project by Richard Pawson

35

[TestMethod]
public void TestAllRemainingWordCounts()
{
 var possAnswers = new List<string> { "AAAAA", "BBBBB", "CCCCC", "DDDDD" };
 var possAttempts = new List<string> { "ABABA", "BCBCB", "ABCBC" };
 var expected = new List<(string word, int count)> { ("ABABA", 2), ("BCBCB", 2), ("ABCBC", 1) };
 Test(possAnswers, possAttempts, expected);

 void Test(List<string> possAnswers, List<string> possAttempts, List<(string word, int count)>
expected)
 {
 CollectionAssert.AreEqual(expected, AllRemainingWordCounts(possAnswers,
possAttempts).ToList());
 }
}

[TestMethod]
public void TestBetterOf()
{
 var possAnswers = new List<string> { };
 Test(("A", 3), ("B", 2), possAnswers, "B");
 Test(("B", 2), ("A", 3), possAnswers, "B");
 Test(("B", 2), ("A", 2), possAnswers, "B");
 Test(("A", 2), ("B", 2), possAnswers, "A");
 possAnswers = new List<string> { "B" };
 Test(("A", 2), ("B", 2), possAnswers, "B");
 possAnswers = new List<string> { "B", "A" };
 Test(("A", 2), ("B", 2), possAnswers, "B");
 Test(("B", 2), ("A", 2), possAnswers, "A");

 void Test((string word, int count) word1, (string word, int count) word2, List<string>
possAnswers, string expected)
 {
 Assert.AreEqual(expected, BetterOf(word1, word2, possAnswers).word);
 }
}

[TestMethod]
public void TestBestAttempt()
{
 var possAnswers = new List<string> { "ABCDE", "ABBBB", "EDCBA" };
 var possAttempts = new List<string> { "AAAAA", "BBBBB", "CCCCC", "DDDDD", "EEEEE", "EDCBA",
"DEABC" };
 Test(possAnswers, possAttempts, "EDCBA");
 possAnswers = new List<string> { "ABCDE", "ABBBB", "BCDEA" };
 possAttempts = new List<string> { "AAAAA", "BBBBB", "CCCCC", "DDDDD", "EEEEE", "EDCBA", "DEABC" };
 Test(possAnswers, possAttempts, "BBBBB");

 void Test(List<string> possAnswers, List<string> possAttempts, string expected)
 {
 Assert.AreEqual(expected, BestAttempt(possAnswers, possAttempts));
 }
}

Wordle Solver – A-level NEA Project by Richard Pawson

36

Testing that the program can solve the daily Wordle puzzle

The first time I ran the program, it popped up an empty Console window with a flashing cursor and

nothing else happened! An agonizing thirty seconds later, the screen changed to:

The Wordle Solver had found its best start word: RAISE. I opened the daily online Wordle game

(No. 469 – 1 Oct 2022), and typed in RAISE. Wordle responded with:

Back on the Wordle Solver console I translated the colours to the required symbols _ + _ _ *,

typed them in and hit Enter. It came back with the second attempt word ALBUM much more quickly:

Interesting choice! I knew that the algorithm would not necessarily pick a word that was compatible

with the outcomes so far – and this was confirmation.

After just two more attempts and Wordle Solver had got to the answer.

The next morning I tried it again (No. 470 – 2 Oct 2022). Here’s the result:

This seemed almost too good to be true – after the second guess it still only had the letters T, I, and

E, yet it seemed to guess TWINE correctly. Had it just happened to pick out the right word from

many possibilities? I decided to tweak the console program, adding one line at the end of the main

loop:

Wordle Solver – A-level NEA Project by Richard Pawson

37

Console.WriteLine($"{possible.Count} remaining");

This would now tell me – after each attempt had been marked – how many target words remained

as possible answers. I re-ran the first two games:

This shows that, at least for these two games, the algorithm had narrowed down the possibilities to

just one, in both cases. This would be true for six of the next eight games also.

Wordle 471 - 3 Oct 2022

Wordle 472 – 4 Oct 2022

Wordle 473– 5 Oct 2022

With just HARSH and MARSH remaining the solver could not narrow the range any further and just

picked one of the two options.

Wordle Solver – A-level NEA Project by Richard Pawson

38

Wordle 474 – 6 Oct 2022

Wordle 475 – 7 Oct 2022

Wordle 476 – 8 Oct 2022

The 3 remaining here were MICRO, MINOR, and VIGOR. Choosing any of the three would not only

have a 1/3 chance of being right, but if it was wrong the remaining two would have been reduced to

just one.

Wordle 477 – 9 Oct 2022

Wordle Solver – A-level NEA Project by Richard Pawson

39

Wordle 478 – 10 Oct 2022

In the last example, there were just 3 remaining after the second attempt: EBONY, ENVOY, and

ENJOY, each with a 1/3 chance of being right. However, by selecting ENVOY the remainder was

reduced to 1. (ENJOY would also have worked, but EBONY as the third guess would – if it had been

wrong – have left 2 remaining possibilities.)

Overall, the results from these first 10 tests against the live online Wordle game were pleasing: 1 x 2

attempts, 3 x 3 attempts, 5 x 4 attempts, and 1 x 5 attempts. However, this is far too small a sample

from which to extrapolate the solver’s ‘form’. The next stage would be to run a sample over

hundreds of games, ideally over all 2309 possible target words.

However, I decided to look at performance next, because processing time would become more

critical in a simulation of many games.

(The video, mentioned earlier, shows Wordle Solver tackling the online Wordle puzzle for

03/12/2022. View it here: https://www.loom.com/share/75b11691603d485fb7b2a356b4e51e94)

https://www.loom.com/share/75b11691603d485fb7b2a356b4e51e94

Wordle Solver – A-level NEA Project by Richard Pawson

40

Improving the performance through parallel processing

The following code snippet measures the time to determine the first attempt accurately:

var sw = new Stopwatch();
sw.Start();
BestAttempt(AllPossibleAnswers, ValidWords);
sw.Stop();
Console.WriteLine($"{sw.ElapsedMilliseconds} ms");

It yielded the result of 32,998 ms.

I ran the same code again again using the Windows Resource Monitor to show processor usage:

This showed that, after the inevitable spike when a new program is started up, for the remainder of

the run overall processor usage was between 25 and 30%. This makes sense: my laptop has four

cores and the main program is effectively running on just one core (the bit over 25% can be

accounted for by background system processes).

Next I made the a tiny change to the AllRemainingWordCounts function, inserting a call to AsParallel:

public static IEnumerable<(string word, int count)> AllRemainingWordCounts(IEnumerable<string>
possAnswers, IEnumerable<string> possAttempts) =>
 possAttempts.AsParallel().Select(w => (w, WordCountRemainingAfterAttempt(possAnswers, w)));

This time processor usage shot up to 100% and remained there until the function had completed:

The elapsed time fell to 11,527 ms – down by almost a factor of three. My understanding from
reading up on ‘Parallel LINQ’ (known informally as ‘plinq’) is that you would never see a speed up
factor of four (for a four core machine) – because of the background systems processes. A speed up
of just under three seems slightly disappointing, though. In a small side-investigation, I wrote the
following three functions to generate a list of prime numbers:

Wordle Solver – A-level NEA Project by Richard Pawson

41

static List<int> PrimesUpTo(int n) => Enumerable.Range(2, n - 1).AsParallel().Where(x =>
IsPrime(x)).ToList();

static bool IsPrime(int n) => !Enumerable.Range(2, n / 2 - 1).Any(f => IsFactor(f, n));

static bool IsFactor(int f, int n) => n % f == 0;

Calling this function with an argument of 1,000,000, with and without the AsParallel(), I was able
to show that the latter delivered a speed up of 3.8x on my four-core laptop, which was much nearer
the (impossible) ideal of 4x.

Could the parallelization of Wordle Solver be further improved then? Several online postings
suggested that it is all too easy to ‘over parallelise’ and this can have the opposite effect. I tried
adding AsParallel into further functions that enumerated over large lists, but the result was that the
program actually ran slower than with no parallelisation at all.

The posters had been right: optimization for parallel processing is still something of a ‘dark art’. An
interesting area to investigate further, but beyond the scope of this project.
I decided to take the near 3x improvement and leave it at that.

Before running a simulation involving many games there is one obvious piece of ‘low-hanging fruit’

to pick: given that the algorithm always chooses RAISE as its first attempt, this might as well be
hard-coded (a rather extreme form of caching!). The console UI was changed, initializing the attempt
variable up front and moving the evaluation of BestAttempt from the start to the end of the loop:

var possible = AllPossibleAnswers;
var outcome = "";
var attempt = "RAISE";
while (outcome != "*****")
{
 Console.WriteLine(attempt);
 outcome = Console.ReadLine();
 possible = PossibleAnswersAfterAttempt(possible, attempt, outcome).ToList();
 Console.WriteLine($"{possible.Count} remaining");
 attempt = BestAttempt(possible, ValidWords);
}

The UI appears unchanged, but the first attempt RAISE now appears almost instantaneously.

Wordle Solver – A-level NEA Project by Richard Pawson

42

Testing the effectiveness of the algorithm, exhaustively

The parallelization combined with the hard-coded first attempt (though still using the attempt word

calculated by the algorithm) meant that performance was now almost certainly fast enough to

attempt an exhaustive evaluation: running the solver for 2,309 games covering each of the possible

target words. The following small program was used to run the simulation. It loops through all 2,309

possible words, setting up each as the target in turn. It then runs a loop similar to the console UI

program run previously, but instead of asking the user to enter the outcome, it just calls the

MarkAttempt function. The loop also counts the number of attempts taken in the game. When this

loop ends, the count is recorded into a dictionary, and the entries in this dictionary are displayed at

the end:

var dict = new Dictionary<int, int>();
foreach(var target in AllPossibleAnswers)
{
 var possible = AllPossibleAnswers;
 var outcome = "";
 var attempt = "RAISE";
 int count = 0;
 while (outcome != "*****")
 {
 count++;
 outcome = MarkAttempt(attempt, target);
 possible = PossibleAnswersAfterAttempt(possible, attempt, outcome).ToList();
 attempt = BestAttempt(possible, ValidWords);
 }
 if (dict.Keys.Contains(count))
 {
 dict[count]++;
 } else
 {
 dict[count] = 1;
 }
}
foreach(var attempts in dict.Keys.OrderBy(k => k))
{
 Console.WriteLine($"{attempts} attempts: {dict[attempts]} games");
}

The simulation took 20 minutes to complete. The results are presented below in a bar chart – a form

that will be familiar to any regular Wordle user:

The results were (at least to me) quite startling. Not only did the Wordle Solver always solve the

puzzle within six attempts: itnever required more than five attempts. It achieved a ‘hole in one’ just

0

86

1178

977

67

1

0 200 400 600 800 1000 1200 1400

6

5

4

3

2

1

No. of attempts to solve Wordle,
for all 2,309 possible target words

Wordle Solver – A-level NEA Project by Richard Pawson

43

once, because RAISE is a possible answer. Processing these results further we get the following

percentages:

Attempts % Cumulative

1 -
2 2.9%
3 42.3% 45.2%

4 51.0% 96.2%

5 3.7% 100%

6 -

and an average of 3.55 attempts per puzzle.

Wordle Solver – A-level NEA Project by Richard Pawson

44

Comparing the two variants of the algorithm, plus ‘hard’

mode

Having built the program to test the Solver exhaustively, the next task was to compare the

performance of the two variants (of the same algorithm) proposed in the analysis section:

1. Return the number of remaining possible answers resulting from the worst outcome (mark)

given to the attempt word.

2. Return the (mathematically) expected word count remaining after the attempt – effectively

the weighted average of all possible outcomes.

and then, using whichever of the two variants proved more effective, I tested the Solver in simulated

‘Hard mode’.

Variant 2 above, required only that the WordCountRemainingAfterAttempt function be changed to:

public static int WordCountRemainingAfterAttempt(IEnumerable<string> possibleAnswers, string attempt)
=>
 possibleAnswers.GroupBy(w => MarkAttempt(attempt, w)).Sum(g => g.Count() * g.Count());

For hard mode, it was necessary only to change the code for BestAttempt, changing the start of the

expression from the (larger and fixed-size) possAttempts to the (smaller and reducing with each

attempt) list of possAnswers:

public static string BestAttempt(IEnumerable<string> possAnswers, IEnumerable<string> possAttempts) =>
 AllRemainingWordCounts(possAnswers, possAnswers).

 Aggregate((bestSoFar, next) => BetterOf(bestSoFar, next, possAnswers)).word;

Unsurprisingly, running in Hard mode, was much faster, because the algorithm is evaluating far

fewer possible attempt words each time.

The results for the three algorithms are summarised in the chart overleaf:

Wordle Solver – A-level NEA Project by Richard Pawson

45

The second variant (‘Expected ..’) solved puzzle more often in 3 attempts than 4, but 10 of the

possible target words took six attempts. The average number of attempts was 3.57 – slightly worse

than the first variant (‘Least worst’)

Operating in Hard mode (using the better of the two variants: ‘least worst’) resulted in the puzzle

being solved in just 2 attempts significantly more often than either of the other two. However, it

failed to solve the puzzle in six attempts for 13 of the possible target words, and the average number

of attempts was 3.67.

In summary, the first algorithm proposed for this project is the best performing in two measures:

- It is guaranteed to solve the puzzle in 5 attempts or fewer, and with 96% of games taking

four or fewer attempts.

- Its overall average of 3.55 attempts per game is the lowest of the three tested algorithms

Wordle Solver – A-level NEA Project by Richard Pawson

46

Evaluation

At the end of the Analysis section, 10 SMART objectives were set. These are repeated below (in

abbreviated form), showing that 9 of the objectives were achieved, and the other one exceeded.

Evaluation against the SMART objectives

Objectives concerning functionality and usability of the resulting system
1. The system should be capable of solving the daily online Wordle puzzle, requiring the

investigating user only to map the inputs and outputs between the two systems, not to

provide any other assistance. ACHIEVED

2. Prove that, across all possible target words for Wordle, the system will solve the puzzle in six

or fewer attempts in at least 97% of cases (gauged – from the interviews - to be equivalent

to a reasonably good human player). EXCEEDED (it solves the puzzle in five of fewer

attempts 100% of the time).

3. Demonstrate the difference between adopting the ‘worst case’ and ‘expected’ alternative

variants of the algorithm (in terms of percentage of puzzles solved in six attempts, and the

average number of attempts taken, across all 2,309 possible target words). ACHIEVED

4. Show that the algorithm could also solve puzzles in the ‘Hard mode’ setting, and determine

the effectiveness relative to 2, using the same criteria as given in 3. ACHIEVED

5. Demonstrate that the minimalist user interface sketched previously, while designed only for

the author’s use, could be used by an external validator following simple written

instructions. ACHIEVED

Objectives concerning the implementation
6. All core functionality (everything except the minimal user interface code) to be provided by

‘pure’ functions. ACHIEVED

7. All core functions to comprise a single statement returning the value of an expression.

ACHIEVED

8. All core functions to be implemented without need for recursive calls. ACHIEVED

9. Demonstrate that the functional implementation can be parallelised for faster performance.

ACHIEVED

10. Provide 100% unit testing coverage for core functions. ACHIEVED

Wordle Solver – A-level NEA Project by Richard Pawson

47

External validation

It was important to me to gain external validation of the Wordle Solver – not to establish how well it

worked (I’d already done that) but to validate:

1) That the program works i.e. can solve a Wordle puzzle

2) That the program consists of nothing more than the functions shown in the

3) That there are no dependencies on any external frameworks

4) That there is no form of ‘cheating’ in the code.

For this I approached Pete Dring, Head of Computing at Fulford School in York. I sent him the

complete solution with minimal written instructions on how to run it.

In an email response on 20th October 2022, he replied that he had verified all these points, and he

included the screenshots below in relation to the first:

Mr.Dring went on to say:

This is very impressive! … There's a huge amount of thought behind those …

functions: it's a very elegant solution!

Wordle Solver – A-level NEA Project by Richard Pawson

48

Evaluating the user interface

Mr Dring, who did not see this report when he examined the solution, did comment on the limited

user interface, though he had no difficulty using it. He also accepted my argument that the system

was designed solely for my own use in conducting a scientific investigation into the feasibility of

solving Wordle automatically, not for use by a gamer. As such, as I argued in Mock-up of the user

interface, the current user interface is both effective and efficient.

Undoubtedly the user interface could be improved.

It could tell you, when the puzzle is complete (i.e. you have entered ***** as the mark), in case

you didn’t realise and carried on guessing.

There could be more validation. At present the UI does not check that the marks entered consist

only of the three symbols *, +, _ (for Green, Yellow, Grey). Nor does it check for impossible

combinations such as *+***. But if you enter wrong symbols or an invalid combination then the

system isn’t going to solve the puzzle. Either on that attempt or a subsequent one the solver will

throw an exception – and not an especially ‘friendly’ one at that – when it determines that there are

no possible remaining answers. But what have you lost? Just run the program again and enter the

correct marks this time. Importantly, there is little point in adding these simple forms of validation

when it is impossible to verify that the user has in fact entered the correct mark for the computer’s

attempt, because the whole point is that the computer does not know the target word against which

it could validate the marking. If you enter a valid combination of the symbols, but not the correct

ones, the computer will – either on the next attempt or shortly thereafter – reach a situation where

there are no possible answers left that are consistent with all the marks.

It could be given a Graphical User Interface, perhaps echoing the design of the Wordle game itself.

The technical architecture – which fully separates the concerns of the user interface from the core

domain logic – would facilitate the implementation of a brand new user interface, including a GUI for

use on a laptop or, like Wordle itself, an App for a mobile phone.

But what would be the point of designing a friendly user interface for this system? Could it be turned

into a consumer product: an automated Wordle solver perhaps, or even, with the functionality

deliberately reduced, a ‘Wordle helper’? (The latter could, for example, show you the possible

answer words remaining after your attempts so far). There’s just no point: if you want general

advice on how to improve your Wordle skills, there’s plenty of such advice online (good and bad). If

you just want to publish a great running average score, there are easier and even more effective

ways to cheat – as described above.

In fact, if you want to cheat you can even guarantee to get the daily Wordle puzzle in the first

attempt every time! An enterprising software engineer has reverse engineered the JavaScript code

and published a spoiler list8 - showing the daily answers for the next several years! (Rather

surprisingly, it turns out that the Wordle software runs entirely within the browser. A more

intelligent design would have been to share the load between client and server, keeping the marking

– and the knowledge of the target word – held securely on the server side.)

Having written the solver, I enjoy watching it perform against the Wordle puzzle. But I also still enjoy

solving the puzzle for myself, without help to remember to do this before applying the Wordle

8 https://medium.com/@owenyin/here-lies-wordle-2021-2027-full-answer-list-52017ee99e86

https://medium.com/@owenyin/here-lies-wordle-2021-2027-full-answer-list-52017ee99e86

Wordle Solver – A-level NEA Project by Richard Pawson

49

Solver. Solving it ‘with just a little bit of help from the solver’ doesn’t deliver the satisfaction of

either.

Evaluating the code style

I have made every effort to adopt best practices for code styling including:

- Use of long, descriptive names for functions and variables, especially where there are two or

more parameters that might easily be confused. (Where I have used short names, for

example using n for a count these have always been conscious choices).

- Minimising the duplication of code (the ‘DRY’ principle – as in Don’t Repeat Yourself’)

- Breaking out functions, even where there is only a single use, in the sole interest of making

an otherwise complex function easier to read. (The principle of ‘intentional coding’)

One reviewer criticised the fact that the code uses literal characters instead of constants, for

example:

static string SetAttemptIfGreen(string attempt, string target, int n) =>
 IsGreen(attempt, target, n) ? SetChar(attempt, n, '*') : attempt;

This was, again, a conscious choice: I found that, especially when debugging, it was far clearer to

read this function than to write e.g.

static string SetAttemptIfGreen(string attempt, string target, int n) =>
 IsGreen(attempt, target, n) ? SetChar(attempt, n, CharForInPlaceMatch) : attempt;

Especially as, in this system, that character is the one that is also used in the console user interface.

And the fact that functions have 100% unit test coverage, means that if I were to change this literal

value in one place and overlook the others (the second reason for using named constants), my tests

would immediately alert me.

I am well aware of, and generally support, the principle that named constants should be used in

preference to literal values. However, coding style guides, like English style guides, are guides not

hard-and-fast rules. All such guides may occasionally be broken in service of a higher goal.

Could the effectiveness of the Solver be improved?

Although I am extremely pleased with the results of the project, it is clear to me that the current

implementation is not strictly optimal. The proper definition of the minimax algorithm is recursive:

my current Wordle Solver optimises only the next attempt. That’s a bit like writing a chess playing

algorithm that looks only one move ahead (though including the opponent’s immediate possible

responses).

At present, Wordle Solver picks RAISE as the best first attempt, because the worst possible

outcome (_ _ _ _ _ in this case) leaves only 167 possible words remaining, which is fewer than

the worst outcome for any of the other 12,946 valid attempt words. If presented with this actual

outcome, the solver always picks BLUDY (an archaic variant of the word ‘bloody’) as its next

attempt, for which the worst outcome would then leave just 13 possible words. But might there be

an alternative to RAISE that doesn’t score quite so well on the first round, but which after two

attempts never leaves more than 12 possible words, or perhaps even fewer?

Wordle Solver – A-level NEA Project by Richard Pawson

50

Given that the current algorithm needs five attempts for only 3.6% of the possible puzzles, being

able to guarantee to get every puzzle in four attempts seems tantalizingly close!

To guarantee to solve all Wordle puzzles in four or fewer attempts would mean that after three

attempts there must be no more than one remaining possible word. To see if this were possible it

would be necessary to run the algorithm three levels deep. The problem is combinatorial explosion.

Although my Wordle solver can be shown to be of ‘polynomial’ complexity in (Big-O terms), with n

being a large number (12,947 at present) even n2 (i.e optimsation over the next two attempts deep)

is going to be computationally very expensive.

Given that, even with the benefit of parallel processing, it takes 11 seconds to come up with RAISE,

going just two levels deep will take several hours. Quite apart from the substantial coding effort

involved, I don’t fancy running my new laptop flat out at 100% processing usage for several hours!

Modern microprocessors apparently have in-built thermal sensors and should ‘throttle down’ if in

danger of overheating (thereby extending the required time further), but I’m none too confident

about the impact of all that heat on the lithium batteries.

To re-purpose the best-known quotation from the movie JAWS, my advice to anyone wanting to

take this project further is…

‘You’re gonna need a bigger computer!’

Wordle Solver – A-level NEA Project by Richard Pawson

51

Appendix I: Lists of valid words and possible

answer words

For this project I used a list of 2,309 possible answer words represented like this in the code:

public static List<string> AllPossibleAnswers =new List<string> {
"ABACK","ABASE","ABATE","ABBEY","ABBOT","ABHOR","ABIDE","ABLED","ABODE","ABORT"

to

"YOUNG","YOUTH","ZEBRA","ZESTY","ZONAL"});

For the list of valid words (i.e. for use as attempts) I created a new list made up from the 2,309

words above, plus an additional 10,638 words, totalling 12,947:

public static List<string> ValidWords = new List<string> {
 ///First, all the Possible answers (repeated from above) then:

"AAHED","AALII","AARGH","AARTI","ABACA","ABACI","ABACS","ABAFT","ABAKA","ABAMP",

to

"ZUPAS","ZUPPA","ZURFS","ZUZIM","ZYGAL","ZYGON","ZYMES","ZYMIC"});

Note that it makes no difference to the Wordle Solver functions whether these lists are sorted into

alphabetical order or not.

Both lists were obtained from the same source9, however the first list (2,309) is available from many

sources and widely claimed to be the list used in the Official Wordle game. (The full lists have not

been included in this report in the interests of the environment, since it will be printed out.)

Addendum

Only after completing both the project and the report, I came across a GitHub repository10 that lists

some 14,855 words which it claims are valid attempt words from Wordle and, indeed, extracted

from the Wordle source code. I haven’t validated that claim, but I quickly ran the Wordle Solver

again with this longer list – trying both variants of the algorithm in regular mode (it couldn’t make

any difference to running in Hard mode). The first variant still chose RAISE, but the second now

chose a new word OLATE – which apparently means ‘to lay waste’. Thankfully though, there was no

significant difference in the results: it still took up to five guesses and, to the two decimal places

already quoted, did no better on the average number of attempts: 3.55.

9 https://www.wordunscrambler.net/word-list/wordle-word-list
10 https://gist.github.com/dracos/dd0668f281e685bad51479e5acaadb93

https://www.wordunscrambler.net/word-list/wordle-word-list
https://gist.github.com/dracos/dd0668f281e685bad51479e5acaadb93

